Although our wing mathematical model assumes that the wing's vortices trail straight downstream, in reality they roll up into two concentrated tip vortices, which have a somewhat smaller span b_{v} than the wing's geometric span b. See Figure 5.5 in Anderson (for a higheraspect ratio, the rollup is more gradual as sketched here).

It is known that during the roll-up process, the so-called moment of vorticity cannot change. This is defined as follows, for a sheet and for discrete vortices.

$$
\begin{array}{lll}
I_{\mathrm{v}} \equiv \int_{-b / 2}^{b / 2} \gamma y d y & & \text { (vortex sheet) } \\
I_{\mathrm{v}} \equiv \sum \Gamma_{\mathrm{v}} y_{\mathrm{v}} & & \text { (discrete vortices) }
\end{array}
$$

We will assume that the wing has an elliptic circulation distribution

$$
\Gamma(y)=\Gamma_{0} \sqrt{1-(2 y / b)^{2}}
$$

which means that the rolled-up tip vortices have a circulation of

$$
\Gamma_{\mathrm{v}}=\Gamma_{0}
$$

a) Evaluate I_{v} just behind the trailing edge.
b) Evaluate I_{v} in the rolled-up wake.
c) Using the fact that I_{v} cannot change, determine the rolled-vortex span b_{v}. Check by eyeball against Figure 5.5 in Anderson.

